Motherwell, W. D. S. (1976). Crystallographic Data Centre Manual. Univ. of Cambridge, England.
Podder, A., Dattagupta, J. K., Saha, N. N. \& Saenger, W. (1978). Private communication.

Post, M. L., Kennard, O. \& Horn, A. S. (1975). Nature (London), 256, 342-343.

Sabatino, P., Foresti Serantonl, E., Krajewski, A., Mongiorgi, R. \& Riva di Sanseverino, L. (1975). VI Conf. Ital. Crystallogr. Assoc. Abstr., pp. 106-108.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.

The Structure of \boldsymbol{N}-(2-Methylphenyl)-3,6-dithiacyclohexene-1,2-dicarboximide

By M. Bukowska-Strzyżewska and W. Dobrowolska
Institute of General Chemistry, Technical University, Żwirki 36, 90-924 Łódź, Poland
and T. Glowiak
Institute of Chemistry, Wrocław University, Joliot-Curie 14, Wroctaw 50-383, Poland

(Received 10 December 1979; accepted 19 May 1980)

Abstract

C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2}\), orthorhombic, Pbca, $a=$ 16.360 (4),$\quad b=19.676$ (7), $\quad c=8.041$ (3) $\AA, \quad V=$ $2588.1 \AA^{3}, Z=8, D_{x}=1.42, D_{m}=1.40 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=1152, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu(\mathrm{Cu} K \alpha)=$ $3.55 \mathrm{~mm}^{-1}$. The structure has been solved by direct methods with the 1506 independent reflections with $I>1.96 \sigma(I)$. The refinement by full-matrix least squares with anisotropic temperature factors gave a conventional $R=0.059$. The 3,6 -dithiacyclohexene ring has a deformed half-chair conformation with the asymmetry parameter $\Delta C_{2}(1,2)=11.7^{\circ}$. The imide ring is not perfectly planar. The dihedral angle between phenyl and imide rings is $75.0(6)^{\circ}$. The differences between the $\mathrm{C}\left(s p^{3}\right)-\mathrm{S}(1.807 \AA \mathrm{av}$.$) and \mathrm{C}\left(s p^{3}\right)-\mathrm{S}$ ($1.729 \AA$ av.) bond lengths are smaller than normal.

Introduction. This work is part of a series of X-ray diffraction investigations of N -substituted derivatives of 3,6-dithiacyclohexene-1,2-dicarboximide which is directed towards a better understanding of the influence of the N substituent on the spatial shape of the molecule, the conformation of the dithiacyclohexene ring, the hybridization of the N -atom orbitals and the planarity of the central part of the molecule (Bukowska-Strzyżewska \& Pniewska, 1979a,b; Dobrowolska \& Bukowska-Strzyżewska, 1980). This paper describes the molecular structure of N -(2-methyl-phenyl)-3,6-dithiacyclohexene-1,2-dicarboximide.

The molecule (I) and its resonance forms (II and III) are shown in Fig. 1. The compound was synthesized by Hahn \& Rybczyński (1971, 1976) in order to investigate the influence of the N substituent on the pharmacological activity of this group of heterocyclic compounds.

The crystals were obtained from methanol solution. The space group was determined from Weissenberg photographs. The cell parameters and intensities were measured with a single crystal of approximate dimensions $0.15 \times 0.15 \times 0.30 \mathrm{~mm}$ on a Syntex $P 2_{1}$ single-crystal diffractometer. Intensity data were collected to $\theta=60^{\circ}$ by the $\theta / 2 \theta$ scan method using monochromatized X-rays. The unobserved reflections were omitted from the structure analysis. Correction for absorption was neglected in view of the low μr value for the crystal ($\mu=3.55 \mathrm{~mm}^{-1}$). The atomic scattering factors were taken from Doyle \& Turner (1968).
(I)

(III)

Fig. 1. Molecule (I) and its resonance forms (II and III).
(C) 1980 International Union of Crystallography

Table 1. Atomic parameters for N-(2-methylphenyl)-3,6-dithiacyclohexene-1,2-dicarboximide with e.s.d.'s in parentheses $\left(x, y, z \times 10^{5}\right.$ for $\mathrm{S}, \times 10^{4}$ for $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and

	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
S(3)	35416 (9)	29887 (9)	634 (17)	$4 \cdot 11$ (6)
S(6)	50861 (7)	35709 (8)	28506 (18)	$3 \cdot 84$ (6)
O(2)	1980 (2)	3292 (2)	2281 (4)	4.0 (2)
$\mathrm{O}(1)$	3955 (2)	4069 (2)	5783 (5)	$5 \cdot 5$ (2)
N(9)	2791 (2)	3762 (2)	4318 (4)	2.9 (2)
C(4)	4573 (3)	3263 (3)	-386 (6)	$4 \cdot 3$ (2)
$\mathrm{C}(5)$	5191 (3)	3100 (3)	935 (7)	4.3 (3)
C(2)	3455 (3)	3347 (2)	2028 (5)	$2 \cdot 8$ (3)
C(1)	4037 (3)	3573 (3)	3040 (6)	3.0 (2)
C(8)	2642 (3)	3452 (2)	2813 (6)	3.0 (5)
C(7)	3634 (3)	3942 (3)	4573 (7)	$3 \cdot 7$ (2)
C(10)	2164 (3)	3950 (3)	5509 (6)	$3 \cdot 1$ (2)
$\mathrm{C}(11)$	2058 (3)	3539 (3)	6908 (6)	4.1 (2)
C(12)	1464 (4)	3710 (3)	8048 (7)	4.8 (2)
C(13)	982 (3)	4266 (4)	7778 (8)	4.9 (3)
C(14)	1096 (3)	4661 (3)	6398 (7)	4.5 (3)
C(15)	1690 (3)	4513 (3)	5227 (7)	3.7 (3)
C(16)	1801 (4)	4955 (3)	3700 (8)	$6 \cdot 1$ (3)
H(41)	457	378	-54	$4 \cdot 3$
H(42)	475	306	-148	$4 \cdot 3$
H(51)	513	259	121	$4 \cdot 3$
H(52)	576	316	49	$4 \cdot 3$
H(111)	243	311	708	$4 \cdot 1$
H(121)	138	341	908	4.8
H(131)	55	439	865	4.9
H(141)	71	506	621	4.5

The structure was solved by direct methods with the MULTAN program (Germain, Main \& Woolfson, 1971). The refinement of the structure was carried out by the full-matrix least-squares method. H atoms were revealed in a difference Fourier synthesis. The parameters of the H atoms were not refined. Unit weight was assigned to each reflection. The final $R=0.059$. The atomic parameters are given in Table 1.*

Discussion. Bond lengths and angles are listed in Table 2.

The 3,6-dithiacyclohexene ring has an imperfect half-chair conformation. The torsion angles $\varphi,|\varphi|_{\mathrm{av}}$ and asymmetry parameters (Duax \& Norton, 1975) are given in Fig. 2. The asymmetry parameter in relation to the twofold axis is $\Delta C_{2}(1,2)=11 \cdot 7^{\circ}$, and in relation to the $1-4$ mirror plane $\Delta C_{s}(1,4)=17 \cdot 5^{\circ}$. The average $\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$ bond length ($1.807 \AA$) is in good agreement with the accepted value of $1.812 \AA$ (Pauling, 1960) and slightly lower than in other 3,6-dithiacyclohexene rings: 1.823 (2) \AA (Bukowska-Strzyżewska \& Pniewska, 1979b), 1.823 (4) \AA (Kirfel, Will \& Fickentscher,

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{S}(3)-\mathrm{C}(2) \quad 1$	1.735 (5)	$\mathrm{C}(8)-\mathrm{N}(9) \quad 1.3$	1.377 (6)
$\mathrm{S}(3)-\mathrm{C}(4) \quad 1$.	1.808 (5)	$\mathrm{C}(8)-\mathrm{O}(2) \quad 1.20$	(6)
$\mathrm{S}(6)-\mathrm{C}(1)$ 1.	1.722 (4)	$\mathrm{C}(10)-\mathrm{C}(11)$	
$\mathrm{S}(6)-\mathrm{C}(5) \quad 1$.	1.806 (6)	$\mathrm{C}(10)-\mathrm{C}(15) \quad 1.3$	1.372 (7)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$.	1.329 (6)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.3$	1.379 (8)
$\mathrm{C}(1)-\mathrm{C}(7) \quad 1$.	1.496 (7)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.3$	1.366 (9)
$\mathrm{C}(2)-\mathrm{C}(8) \quad 1$.	1.488 (6)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.36$	1.365 (9)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$	1.501 (7)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.3$	1.395 (8)
$\mathrm{C}(7)-\mathrm{N}(9)$. 1	1.403 (6)	C(15)--C(16) 1.5	1.515 (8)
$\mathrm{C}(7)-\mathrm{O}(1) \quad 1$	$1 \cdot 193$ (7)	$\mathrm{N}(9)-\mathrm{C}(10) \quad 1.4$	1.451 (6)
$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{C}(4)$	(4) 97.8 (2)	$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{N}(9)$	$106 \cdot 1$ (4)
$\mathrm{C}(1)-\mathrm{S}(6)-\mathrm{C}(5)$	(5) 99.9 (2)	$\mathrm{C}(8)-\mathrm{N}(9)-\mathrm{C}(7)$	110.6 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(6)$	131.2 (4)	$\mathrm{C}(8)-\mathrm{N}(9)-\mathrm{C}(10)$	124.6 (4)
$\mathrm{S}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	120.9 (4)	$\mathrm{C}(7)-\mathrm{N}(9)-\mathrm{C}(10)$	$124 \cdot 8$ (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	7) 107.9 (4)	$\mathrm{N}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	118.2 (4)
$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	129.4 (4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	122.1 (5)
$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	121.0(3)	$\mathrm{N}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	119.7 (4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	8) 109.5 (4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	118.8 (5)
$\mathrm{S}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.0(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.8 (6)
S(6)-C(5)-C(4)	115.4 (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120 \cdot 9$ (6)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	1) 127.7 (5)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.2 (5)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(9)$	(9) 105.9 (4)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	117.2 (5)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(9)$	(9) 126.4 (5)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120 \cdot 8$ (5)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{N}(9)$	(9) 125.9 (4)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	122.0 (5)
$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{O}(2)$	(2) 128.0 (4)		

1975), 1.819 (7) A (Bukowska-Strzyżewska \& Pniewska, 1979a). The average bond lengths $\mathrm{S}-\mathrm{C}\left(s p^{2}\right)=1.729, \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)=1.329$ (6) and $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)=1.501$ (7) \AA are in good agreement with values found in the rings of the structures mentioned above.
The imide ring is not perfectly planar. Table 3 gives the equation of its best plane, the deviations of atoms from the plane and χ^{2} and p values. It is assumed that if $p<0.01$ the set of atoms defining the plane is not rigorously planar within experimental error. The three $\mathrm{N}-\mathrm{C}$ bonds are practically coplanar, but the $\mathrm{C}(10)-$ $\mathrm{C}(13)$ line of the phenyl ring deviates considerably from the imide ring plane. The $\mathrm{C}-\mathrm{N}$ bond lengths $[1.403$ (6) and $1.377(6) \AA$] are in good agreement with those in N-(2-chlorophenyl)-3,6-dithiacyclo-hexene-1,2-dicarboximide laverage 1 1385 (7) \AA; Bukowska-Strzyzewska \& Pniewska, 1979a]. If a $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}\left(s p^{3}\right)$ single-bond distance is taken as $1.47 \AA$ and a $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{2}\right)$ double-bond distance as $1 \cdot 29 \AA$ (Pauling, 1960), and if a linear relationship between

Fig. 2. The torsion angles $\left({ }^{\circ}\right) .\left|\Delta C_{2}(1,2)=11.7^{\circ} ;|\varphi|_{\mathrm{av}}=30.9^{\circ}.\right|$

Table 3. Deviations (\AA) of the atoms from the leastsquares planes

The imide ring			
$-0.0533 X+0.9015 Y-0.4295 Z=4.9315$			
C(1)	0.004 (5)	*O(2)	-0.052 (4)
C(2)	0.003 (5)	${ }^{*} \mathrm{C}(4)$	0.591 (6)
C(7)	-0.013 (6)	*C(5)	-0.209 (6)
C(8)	-0.010 (5)	* $\mathrm{C}(10)$	-0.016 (5)
N(9)	0.008 (4)	*C(13)	-0.136 (7)
*S(3)	0.039 (2)	$\chi^{2}=13.69$$p<0.01$	
*S(6)	-0.025 (2)		
* O (1)	-0.057 (5)		

The phenyl ring

$-0.6554 X-0.5650 Y$					$-0.5013 Z=$	-8.9313
$\mathrm{C}(10)$	$0.000(5)$	$\mathrm{C}(15)$	$-0.005(5)$			
$\mathrm{C}(11)$	$0.005(5)$	${ }^{*} \mathrm{~N}(9)$	$0.016(4)$			
$\mathrm{C}(12)$	$-0.007(6)$					
$\mathrm{C}(13)$	$0.000(6)$	$\chi^{2}=4.03$				
$\mathrm{C}(14)$	$0.006(6)$	$0.10<p<0.50$				

* Not included in the calculation of the plane.
bond length and bond order is assumed, the present $\mathrm{C}-\mathrm{N}$ bonds possess 35 and 45% double-bond character. This may be due to the different contribution of resonance structures (II) and (III) (Fig. 1). The $\mathrm{C}-\mathrm{O}$ bond lengths correspond to this scheme, the shorter $\mathrm{C}(7)-\mathrm{O}(1)=1.193$ (7) \AA bond is adjacent to the longer $\mathrm{C}(7)-\mathrm{N}(9)=1.403$ (6) \AA bond and the longer $C(8)-O(2)=1.206 \AA$ is adjacent to the shorter $\mathrm{C}(8)-\mathrm{N}(9)=1.377(6) \AA$. The phenyl ring is perfectly planar within the observed errors. The
dihedral angle between the phenyl and imide rings is 75°. The maximum difference between $\mathrm{C}-\mathrm{H}$ bond lengths is $0.035 \AA$, with a mean value of $1.02 \AA$.

The only noteworthy intermolecular contact is $\mathrm{S}(6) \cdots \mathrm{O}(2)=3 \cdot 149$ (3) \AA between molecules related by the a glide.

We would like to thank Professor W. Hahn and Dr B. Rybczyñski for supplying the crystals.

This research was supported by Project MR I-9 from the Polish Academy of Sciences.

References

Bukowska-Strzyżewska, M. \& Pniewska, B. (1979a). Acta Cryst. B35, 633-639.
Bukowska-Strzyżewska, M. \& Pniewska, B. (1979b). Acta Cryst. B35, 640-643.
Dobrowolska, W. \& Bukowska-Strzyżewska, M. (1980). Acta Cryst. B36, 890-893.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure. New York, Washington, London: Plenum.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
hahn, W. E. \& Rybczyński, B. (1971). Soc. Sci. Łódź. Acta Chim. 16, 123-128.
hahn, W. E. \& Rybczyński, B. (1976). Rocz. Chem. 50, 1523-1533.
Kirfel, A., Will, G. \& Fickentscher, K. (1975). Acta Cryst. B31, 1973-1975.
Pauling, L. (1960). The Nature of the Chemical Bond, pp. 224-250. Ithaca: Cornell Univ. Press.

Structure of 1,2,2,6,6-Pentamethyl-4-vinyl-4-piperidinol*

By M. Cygler and K. Dobrynin
Department of Crystallography, Institute of Chemistry, University of Łódź, 91-416 Łódź, Nowotki 18, Poland
and M. Perrin
Université Claude Bernard Lyon I, Laboratoire de Minéralogie-Cristallographie associé au CNRS (ERA 600), 43 boulevard du 11 Novembre 1918, 69621 Villeurbanne, France

(Received 9 October 1979; accepted 22 May 1980)

Abstract

C}_{12} \mathrm{H}_{23} \mathrm{NO}\), orthorhombic, $P 2_{1} 2_{2} 2_{1}, a=$ 7.860 (2), $b=10.935$ (3), $c=14.407$ (3) $\AA \AA, Z=4$, $V=1238.3 \AA^{3}, D_{x}=1.06 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=440$, $\mu r(\mathrm{Cu} K a)=0 \cdot 15.1514$ independent reflexions were measured on a CAD-4 diffractometer. The structure was solved by direct methods and refined to $R=0.054$ for 999 reflexions with $I>3 \sigma(I)$. The piperidine ring

[^1]0567-7408/80/102478-03\$01.00
adopts a chair conformation with an axial hydroxyl group. The formation of an intramolecular $=\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond is suggested. Between molecules there are only van der Waals contacts.

Introduction. In molecules with bulky ring substituents, steric interactions strongly influence the conformation of the molecular skeleton. 2,2,6,6© 1980 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35356 (38 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * The Conformation of the Piperidine Ring. IV.

